

Every species can be a model: Reference-quality PacBio genomes from single insects

Sarah B Kingan¹, Christine C Lambert¹, Liuqi Gu², Katharina von Wyschetzki³, Primo Baybayan¹, Konrad Lohse⁴, James R Walters², Mara KL Lawniczak³, Jonas Korlach¹ 1. PacBio, Menlo Park, CA, 2. University of Kansas, Lawrence, 3. Wellcome Sanger Institute, Hinxton UK, 4. Edinburgh University, UK.

Insect Assembly

Challenges

- Small body size limits amount of genomic DNA from a single individual
- High heterozygosity samples require diploidaware *de novo* assembly and curation strategies
- Pooling multiple individuals complicates bioinformatics analysis

Solutions

- Standard HiFi Library Prep with 16 µg DNA

Identifying Sex Chromosomes (ZW)

-Neo-Z chrom resulted from fusion of Ancestral Z and autosome¹ -W chromosome absent from previous reference but cytogenetic analysis consistent with fused Neoand Anc-W

Monarch (*Danaus plexippus*)

- PacBio libraries generated from single insects enabled by Low DNA Input Protocol
- Two samples (genome <600 Mb) can be multiplexed on one SMRT Cell 8M on Sequel II System
- Genome assembly with HiFi reads is computationally efficient
- Assemblies from HiFi reads are more complete than other technologies

Red Admiral (Vanessa atalanta)

- Single-contig chromosomes with resolved telomere sequences revealed by alignment to *H. melpomene*

Heliconius melpomene (Heml2.5)

PacBio Workflows

- Single Female collected - DNA extraction with "10X modified" protocol³

- Low DNA Input Library Prep

100

ASSEMBLY

- FALCON for HiFi reads - Polish with racon - Haplotype deduplication with Purge Dups or Purge Haplotigs

References and Acknowledgements

All protocols can be found on our website:

- www.pacb.com/documentation/
- BUSCO: Waterhouse RM et al. (2017) Mol Biol Evol, 35(3):543-548

Mea 1210 (1910) Mea 1220 (1910) Mea 12

- Diversity in telomere structure

Mosquito (Anopheles coluzzii)

BUSCO Complete: 99.1%

BUSCO Duplicate: 0.3%

- Single Females collected - DNA extraction with "10X modified" protocol³

200

Cummulative Assembly Length (Mbp)

10

ASSEMBLY

200

Assembly is fast with HiFi reads

- Sample 1 subreads assembled and compared to HiFi assembly

Sample 1	HiFi Read Assembly	Long Read Assembly
Coverage	25-fold	40-fold
N50 Read Length (N5)	11 kb (19 kb)	12 kb (22 kb)
Primary Asm Length	262 Mb	243 Mb
Primary Contig N50	5.28 Mb	3.86 Mb
Primary Contigs	465	212
BUSCO	C:98.7%, D:0.1% F:0.6%, M:0.7%	C:98.7, D:0.2% F:0.6%, M:0.7%
CPU Hours (Consensus + Assembly)	1604	1947

Purge Dups: https://github.com/dfguan/purge_dups FALCON: https://github.com/PacificBiosciences/pb-assembly Canu: https://github.com/marbl/canu

Purge haplotigs: https://bitbucket.org/mroachawri/purge_haplotigs/ Racon: https://github.com/lbcb-sci/racon

Genomescope: https://github.com/schatzlab/genomescope

- Mongue A. J. et al. (2017) G3: 7:3281
- Killick R., and Eckley, I. (2014). J of Stat Software, 58:1t
- Kingan S., et al. (2019) Genes, 10:62
- 4. Vitková M., et al. (2005) Chrom Res. 13:145

The authors wish to thank Michelle Vierra, Greg Concepcion, Maggie Weitzman, Kristin Mars, Nick Sisneros, Adam Knight, Kristin Robertshaw, Pamela Bentley Mills

HiFi assemblies capture satellites and other repeats - 9 Mb of HiFi Read assembly does not map to Long Read assembly - Primarily map to "UNKN" (96%) or sex chromosomes (3% Y, 1% X)

- A known satellite repeat (AgX367, L = 367 bp) maps across contig (below)

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2020 by Pacific Biosciences, the Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of Pacific Biosciences. BluePippin and SageELF are trademarks of Sage Science. NGS-go and NGSengine are trademarks of Agilent Technologies Inc. All other trademarks are the sole property of their respective owners.

150

Cummulative Assembly Length (Mbp)

100